Skip to main content
Log in

Establishment of astrocyte cell lines from sheep genetically susceptible to scrapie

  • Cellular Models
  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Summary

Primary cultures of the brain from sheep embryos were used to establish cell lines after transfection by the simian virus 40 (SV40) large T gene. Two of the lines (A15 and 4A6) displayed astroglial properties. They expressed the glial fibrillary acidic protein (GFAP), intermediate filament protein vimentin, and S-100 (beta-subunit) protein. While numerous rodent and human glial cell lines are available, this is to our knowledge the first description of ovine cell lines with astrocyte features. In addition, these cell lines were derived from sheep embryos chosen for their genetic susceptibility to scrapic (PrP genotype: VV136, QQ171). Therefore, they could be attractive tissue culture models for the study of propagation and pathogenesis of the scrapie agent ex vivo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, C. A.; Higgins, R. J.; Waldvogel, A. S.; Osburn, B. I. Tropism of border disease virus for oligodendrocytes in ovine fetal brain cellcultures. Am. J. Vet. Res. 48:822–827; 1987.

    PubMed  CAS  Google Scholar 

  • Bigami, A.; Dahl, D.; Gliosis. In: Kettenmann, H.; Ransom, B. R., ed.. Neuroglia. Oxford: Oxford University Press; 1995:843–858.

    Google Scholar 

  • Brandner, S.; Isenmann, S.; Kühne, G.; Aguzzi, A. Identification of the end stage of scrapie using infected neural grafts. Brain Pathol. 8:19–27; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Brandner, S.; Isenmann, S.; Raeber, A.; Fisher, M.; Sailer, A.; Kobayashi, Y.; Marino, S.; Weissmann, C.; Aguzzi, A. Normal host prion protein necessary for scrapie-induced neurotoxicity. Nature, 379:339–343; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Büeler, H.; Aguzzi, A.; Sailer, A.; Greiner, R. A.; Autenried, P.; Aguet, M. Weissmann, C. Mice devoid of PrP are resistant to scrapie. Cell 73: 1339–1347; 1993.

    Article  PubMed  Google Scholar 

  • Clouscard, C.; Beaudry, P.; Elsen, J. M.; Milan, D.; Dussaucy, M.; Bounneau, C Schelchert, F.; Chatelain, J.; Launay, J. M.; Laplanche, J. L. Different allelic effects of the codons 136 and 171 of the prion protein gene in sheep with natural scrapie. J. Gen. Virol. 76:2097–2101; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Diedrich, J. F.; Bendheim, P. E.; Kim, Y. S.; Carp, R. I.; Haase, A. T. Scrapieassociated prion protein accumulates in astrocytes during scrapie infection. Proc. Natl. Acad. Sci. USA 88:375–379; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Eklund, C. M.; Kennedy, R. C.; Hadlow, W. J. Pathogenesis of scrapie virus infection in the mouse J. Infect. Dis. 117:15–22; 1967.

    PubMed  CAS  Google Scholar 

  • Elder, G. A.; Potts, B. J.; Sawyer, M. Characterization of glial subpopulations in cultures of the ovine central nervous system Glia. 1:317–327; 1988.

    Article  PubMed  CAS  Google Scholar 

  • Eng, L. F. Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes J. Neuroimmunol. 8:203–214; 1985.

    Article  PubMed  CAS  Google Scholar 

  • Eng, L. F.; Lee, Y. E. Intermediate filaments in astrocytes. In: Kettenmann, H.; Ransom, B. R., ed. Neuroglia. Oxford: Oxford University Press; 1995:650–667.

    Google Scholar 

  • Evrard, C.; Galiana, E. Rouget, P. Establishment of “normal” nervous cell lines after transfert of polyoma virus and adenovirus early genes into murine brain cells EMBO J. 5:3157–3162; 1986.

    PubMed  CAS  Google Scholar 

  • Fraser, H.; Dickinson, A. G. Pathogenesis of scrapie in the mouse: the role of the spleen Nature. 226:462–463; 1970.

    Article  PubMed  CAS  Google Scholar 

  • Fedoroff, S.; White, R.; Subrahmanyan, L.; Kalnins, V. I. Astrocyte cell lineage II. mouse fibrous astrocytes and reactive astrocytes in culture have vimentin-and GFP-containing intermediate filaments Brain Res. 283:303–315; 1983.

    PubMed  CAS  Google Scholar 

  • Galiana, E.; Borde, I.; Marin, P.; Rassoulzadegan, M.; Cuzin, F.; Gros, F.; Rouget, P.; Evrard, C. Establishment of permanent astroglial cell lines, able to differentiate ex vivo, from transgenic mice carrying the polyomavirus large T gene: an alternative approach to brain cell immortalization. J. Neurosci. Res. 26:269–277; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Ghandour, M. S.; Labourdette, G.; Vincendon, G.; Gombos, G.. A biochemical and immunohistological study of S100 protein in developing rat cerebellum. Dev. Neurosci. 4:98–109; 1981.

    PubMed  CAS  Google Scholar 

  • Gown, A. M.; Vogel, A. M. Monoclonal antibodies to intermediate filaments of human cells—unique and cross-reacting antibodies J. Cell Biol. 95:414–424; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Harlow, E.; Crawford, L. V.; Pim, D. C.; Williamson, N. M. Monoclonal antibodies specific for simian virus 40 tumor antigens J. Virol. 39:861–869; 1981.

    PubMed  CAS  Google Scholar 

  • Hunter, N. PrP genetics in sheep and the implications for scrapie and BSE. Trends Microbiol. 5:331–334; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ludwin, S. K.; Szuchet, S. Myelination by mature oligodendrocytes in vivo and in vitro: evidence that different steps in the myelination process are independently controlled Glia 8:219–231; 1993.

    Article  PubMed  CAS  Google Scholar 

  • McCarthy, K. D.; de Vellis, J. Preparation of separate astroglial and oligodendroglial cell cultures from rat cerebral tissue J. Cell Biol 85: 890–902; 1980.

    Article  PubMed  CAS  Google Scholar 

  • Markovits, P.; Dormont, D.; Delpech, B.; Court, L.; Latarjet, R. Trials of ex vivo propagation of the scrapie agent in mouse nerve cells C. R. Acad. Sci. Paris 293:413–417; 1981.

    CAS  Google Scholar 

  • Moser, M.; Collelo, R. J.; Pott, U.; Oesch, B. Developmental expression of the prion protein gene in glial cells Neuron 14:509–517; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Oblinger M. M.; Kost, S. A.; Singh, L. D. In: Federoff, S.; Juurlink, B. M. J.; Doucette, R., ed. Biology and pathology of astrocyte-neuron interactions. Plenum Press, New York: 1993:291–302.

    Google Scholar 

  • Prusiner, S. B. Molecular biology and pathogenesis of prion diseases Trends Biochem. Sci. 21:482–487; 1996.

    Article  PubMed  CAS  Google Scholar 

  • Quinlan, R. A.; Franke, W. W. Molecular interactions in intermediate-sized filaments revealed by chemical crosslinking: heteropolymers of vimentin and glial fibrillary acidic protein in cultured human glioma cells Eur. J. Biochem. 132:477–484; 1983.

    Article  PubMed  CAS  Google Scholar 

  • Race, R. The scrapie agent ex vivo Curr. Top. Microbiol. Immunol. 172:181–193; 1991.

    PubMed  CAS  Google Scholar 

  • Raeber, A. J.; Race, R. E.; brandner, S.; Priola, S. A.; Sailer, A.; Bessen, R. A.; Mucke, L.; Manson, J.; Aguzzi, A.; Oldstone, M. B. A.; Weissmann, C.; Chesebro, B. Astrocyte-specific expression of hamster prion protein (PrP) renders PrP knockout mice susceptible to hamster scrapie, EMBO J. 16:6057–6065; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Richard, O.; Duittoz, A. H.; Hevor, T. K. Early, middle, and late stages of neural cells from ovine embryo in primary cultures Neurosci. Res. 31:61–68; 1998.

    Article  PubMed  CAS  Google Scholar 

  • Sailer, A.; Büeler, H.; Fisher, M.; Aguzzi, A.; Weissmann, C. No propagation of prions in mice devoid of PrP Cell 77:967–968; 1994.

    Article  PubMed  CAS  Google Scholar 

  • Schuermann, M. An expression vector for stable expression of oncogenes. Nucleic Acids Res. 18:4945–4946; 1990.

    Article  PubMed  CAS  Google Scholar 

  • Schwartz, B.; Vicard, P.; Delouis, C.; Paulin, D. Mammalian cell lines can be efficiently established ex vivo upon expression of the SV40 large T antigen driven by a promoter sequence derived from the human vimentin gene Biol. Cell. 73:7–14; 1991.

    Article  PubMed  CAS  Google Scholar 

  • Sharp, G.; Osborn, M.; Weber, K. Occurrence of two different intermediate filament proteins in the same filament in situ within a human glioma cell line. An immunoelectron microscopical study Exp. Cell Res. 141:385–395; 1982.

    Article  PubMed  CAS  Google Scholar 

  • Wang, F.; Cairncross, J. G.; Liem, R. K. H. Identification of glial filament protein and vimentin in the same intermediate filament system in human glioma cells Proc. Natl. Acad. Sci. USA 81:2102–2106; 1984.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Vilette.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vilette, D., Madelaine, M.F. & Laude, H. Establishment of astrocyte cell lines from sheep genetically susceptible to scrapie. In Vitro Cell.Dev.Biol.-Animal 36, 45–49 (2000). https://doi.org/10.1290/1071-2690(2000)036<0045:EOACLF>2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1290/1071-2690(2000)036<0045:EOACLF>2.0.CO;2

Key words

Navigation